If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2y^2+3y+3=0
a = -2; b = 3; c = +3;
Δ = b2-4ac
Δ = 32-4·(-2)·3
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{33}}{2*-2}=\frac{-3-\sqrt{33}}{-4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{33}}{2*-2}=\frac{-3+\sqrt{33}}{-4} $
| 3m+5+8m=25 | | 5x+22=13-50 | | 4/x+9=3 | | 5-2x/3=2x/5+20 | | 10x/3+20=-10 | | 19.95x+24.95x=0.16 | | x^2=8.5^2+11^2 | | 0,4*x-3,2=4,4 | | (5x-4)(5x+4)=8x | | 7x=91−6x | | 9(2y+11)=135 | | 10x=200-10x | | 10x=108-8x | | 7(1-x)=3(x+2) | | 0,5+1=7+4,5s | | 3x=18-36 | | 2(6y+2)=52 | | 10x+60=70 | | (x-8)+4=2(3x+7)-9 | | 6(3y-2)=16 | | 5(2y-1)=15 | | 5(2y=1)=15 | | 3(2b-1)+25=4(3b=1) | | Y5+9=n | | 2^x-^2=8 | | 3x^2+4x–175=0 | | 18/x=9/40 | | 5/8=x/49 | | 2^x-2=8 | | 11x-9=64 | | (160-3x)+3x=605 | | -3+9x+120=180 |